You can use MCP servers in any Agent library which support MCP.If you haven’t used any AI library before, you can try Agno(https://docs.agno.com/introduction)Here is an simple example how to build a agent using scanpy-mcp within Agno.
Copy
import asynciofrom agno.agent import Agentfrom agno.tools.mcp import MCPToolsfrom agno.models.openai.like import OpenAILikemodel = OpenAILike( id="qwen-plus", api_key="sk-**", base_url="https://dashscope.aliyuncs.com/compatible-mode/v1", extra_query={"enable_thinking": False}, )async def run_agent(message: str) -> None: """Run the filesystem agent with the given message.""" async with MCPTools( "scanpy-mcp run --run-mode tool", timeout_seconds=60, ) as mcp_tools: agent = Agent( model= model, tools=[mcp_tools], show_tool_calls=True, debug_mode=True, description=""" You are a bioinformatician. You are good at Python bioinformatic tool like scanpy, anndata, pandas. Run tools one by one. """, monitoring=True ) await agent.aprint_response(message, stream=True)if __name__ == "__main__": asyncio.run( run_agent( "read /data20T/dev/scmcphub/scanpy-mcp/tests/data/hg19; " "then filter cells which gene number < 500; filter genes which express < 3 cells;" "compute qc metrics,include mitochondrial and ribosomal genes, plot total counts, 线粒体百分比,gene number 的小提琴图, 质控图使用multiple_pannel,;" "normalize and Logarithmize the data;" "Identify highly-variable genes; Reduce the dimensionality, 绘制pca_variance_ratio;" "perform cell clustering,设置resolution=0.5, 添加key leiden.0.5, " "and draw UMAP and TSNE scatter plot, color by leiden.0.5, PTPRC, NKG7,KLRD1,GNLY,CST7,PRF1, 每行显示3个图;" ) )