Here is doc for scanpy-mcp, but you can refer to scanpy docs at https://scanpy.readthedocs.io/
read
: Read data from various sources (10X directory, h5ad files, 10x files, text files)write
: Save AnnData object to a filesubset_cells
: Filter or subset cells based on total genes expressed counts, number of cells, or values in adata.obssubset_genes
: Filter or subset genes based on number of cells, counts, or values in adata.varcalculate_qc_metrics
: Calculate quality control metrics (total counts, gene number, mitochondrial genes)log1p
: Logarithmize the data matrixnormalize_total
: Normalize counts per cell to the same total counthighly_variable_genes
: Annotate highly variable genes in the datasetregress_out
: Regress out unwanted sources of variationscale
: Scale the data to unit variance and zero meancombat
: Perform batch effect correction using ComBatscrublet
: Detect and remove doublets using Scrubletneighbors
: Compute a neighborhood graph of observationstsne
: Perform t-distributed stochastic neighborhood embedding (t-SNE) for visualizationumap
: Perform Uniform Manifold Approximation and Projection (UMAP) for visualizationdraw_graph
: Perform force-directed graph drawingdiffmap
: Compute Diffusion Maps for dimensionality reductionembedding_density
: Calculate the density of cells in an embeddingleiden
: Perform Leiden clustering algorithm for community detectionlouvain
: Perform Louvain clustering algorithm for community detectiondendrogram
: Compute hierarchical clustering dendrogramdpt
: Perform Diffusion Pseudotime (DPT) analysispaga
: Perform Partition-based graph abstractioningest
: Map labels and embeddings from reference to query datarank_genes_groups
: Rank genes for characterizing groupsfilter_rank_genes_groups
: Filter ranked genes groupsmarker_gene_overlap
: Compute overlap between marker genesscore_genes
: Score genes based on their expressionscore_genes_cell_cycle
: Score genes based on cell cycle phasepca
: Perform Principal Component Analysispca
: Create a scatter plot in PCA coordinatesdiffmap
: Plot diffusion map embedding of cellsviolin
: Create violin plots of one or more variablesstacked_violin
: Create stacked violin plots for compact visualizationheatmap
: Create a heatmap of gene expression valuesdotplot
: Create a dot plot of expression values per gene for each groupmatrixplot
: Create a heatmap of mean expression values per grouptracksplot
: Create a compact plot of gene expressionscatter
: Create a scatter plot of two variablesembedding
: Create a scatter plot for user-specified embedding basis (e.g., UMAP, t-SNE)embedding_density
: Plot the density of cells in an embeddingrank_genes_groups
: Plot ranking of genes based on differential expressionrank_genes_groups_dotplot
: Create a dot plot of ranked genes groupsclustermap
: Create a hierarchical clustering heatmaphighly_variable_genes
: Plot highly variable genespca_variance_ratio
: Plot PCA variance ratio