Core Analysis Module
infercnv: Perform Copy Number Variation (CNV) analysis by averaging gene expression over genomic regionscnv_score: Calculate CNV scores for individual cells to quantify copy number variation
Dimensionality Reduction Module
pca: Perform Principal Component Analysis on CNV data with default parameters optimized for CNV analysistsne: Generate t-SNE visualization of CNV data using CNV-specific neighborhood informationumap: Create UMAP projection of CNV data utilizing CNV-specific neighborhood relationships
Clustering Module
leiden: Perform Leiden clustering on CNV data using CNV-specific neighborhood informationlouvain: Apply Louvain clustering algorithm to CNV data using CNV-specific neighborhood relationships
Data Requirements
The input AnnData object must contain the following columns inadata.var:
chromosome: Chromosomal location of genesstart: Start position of genesend: End position of genes
load_gene_position function before running CNV analysis.
Output
The analysis generates two main outputs:- CNV scores stored in the original AnnData object
- A separate CNV-specific AnnData object containing the CNV analysis results
cnv_pca, cnv_umap, cnv_leiden) to distinguish them from other analyses.