Core Analysis Module
infercnv
: Perform Copy Number Variation (CNV) analysis by averaging gene expression over genomic regionscnv_score
: Calculate CNV scores for individual cells to quantify copy number variation
Dimensionality Reduction Module
pca
: Perform Principal Component Analysis on CNV data with default parameters optimized for CNV analysistsne
: Generate t-SNE visualization of CNV data using CNV-specific neighborhood informationumap
: Create UMAP projection of CNV data utilizing CNV-specific neighborhood relationships
Clustering Module
leiden
: Perform Leiden clustering on CNV data using CNV-specific neighborhood informationlouvain
: Apply Louvain clustering algorithm to CNV data using CNV-specific neighborhood relationships
Data Requirements
The input AnnData object must contain the following columns inadata.var
:
chromosome
: Chromosomal location of genesstart
: Start position of genesend
: End position of genes
load_gene_position
function before running CNV analysis.
Output
The analysis generates two main outputs:- CNV scores stored in the original AnnData object
- A separate CNV-specific AnnData object containing the CNV analysis results
cnv_pca
, cnv_umap
, cnv_leiden
) to distinguish them from other analyses.