Here is doc for infercnv-mcp, but you can refer to infercnvpy docs at https://infercnvpy.readthedocs.io/
infercnv
: Perform Copy Number Variation (CNV) analysis by averaging gene expression over genomic regionscnv_score
: Calculate CNV scores for individual cells to quantify copy number variationpca
: Perform Principal Component Analysis on CNV data with default parameters optimized for CNV analysistsne
: Generate t-SNE visualization of CNV data using CNV-specific neighborhood informationumap
: Create UMAP projection of CNV data utilizing CNV-specific neighborhood relationshipsleiden
: Perform Leiden clustering on CNV data using CNV-specific neighborhood informationlouvain
: Apply Louvain clustering algorithm to CNV data using CNV-specific neighborhood relationshipsThe input AnnData object must contain the following columns in adata.var
:
chromosome
: Chromosomal location of genesstart
: Start position of genesend
: End position of genesThese columns can be added using the load_gene_position
function before running CNV analysis.
The analysis generates two main outputs:
All visualizations and clustering results are stored with CNV-specific keys (e.g., cnv_pca
, cnv_umap
, cnv_leiden
) to distinguish them from other analyses.